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A computational study of three-dimensional vortex–cylinder interaction is reported
for the case where the nominal orientation of the cylinder axis is normal to the vortex
axis. The computations are performed using a new tetrahedral vorticity element
method for incompressible viscous fluids, in which vorticity is interpolated using a
tetrahedral mesh that is refit to the Lagrangian computational points at each timestep.
Fast computation of the Biot-Savart integral for velocity is performed using a box-
point multipole acceleration method for distant tetrahedra and Gaussian quadratures
for nearby tetrahedra. A moving least-square method is used for differentiation,
and a flux-based vorticity boundary condition algorithm is employed for satisfaction
of the no-slip condition. The velocity induced by the primary vortex is obtained
using a filament model and the Navier–Stokes computations focus on development
of boundary-layer separation from the cylinder and the form and dynamics of the
ejected secondary vorticity structure. As the secondary vorticity is drawn outward
by the vortex-induced flow and wraps around the vortex, it has a substantial effect
both on the essentially inviscid flow field external to the boundary layer and on
the cylinder surface pressure field. Cases are examined with background free-stream
velocity oriented in the positive and negative directions along the cylinder axis, with
free-stream velocity normal to the cylinder axis, and with no free-stream velocity.
Computations with no free-stream velocity and those with free-stream velocity tangent
to the cylinder axis exhibit similar secondary vorticity structures, consisting of a vortex
loop (or hairpin) that wraps around the primary vortex and is attached to the cylinder
boundary layer at two points. Computations with free-stream velocity oriented normal
to the cylinder axis exhibit secondary vorticity structure of a markedly different
character, in which the secondary eddy remains close to the cylinder boundary and
has a quasi-two-dimensional form for an extended time period.

1. Introduction
A vortex located close to a solid body generates a boundary layer along the body

surface that is subject to a favourable pressure gradient on one side of the vortex
and an adverse pressure gradient on the other side. Boundary-layer separation in the
adverse pressure gradient region leads to ejection of (secondary) vorticity generated
on the body into the surrounding fluid. The secondary vorticity interacts with the
original (primary) vortex, and can lead to such consequences as vortex rebound from
the surface or breakup of the vortex into small-scale turbulence.

Unsteady fluid loading on structures is frequently dominated by vortex–body
interaction. Some common examples are the dynamic stall process for accelerated
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airfoils, impact of helicopter rotor vortices with following rotor blades or with the
vehicle airframe, interaction of an aircraft trailing vortex with a following aircraft,
chopping of a pump intake vortex by the turbine blades, and impact of ship or
torpedo hull vortices on the propeller blades. Vortex–body interaction is fundamental
in the formation and dynamics of juncture vortices, which effect performance of
marine and aerodynamic control surfaces and are responsible for scour at the base
of bridge pilings. Interaction of turbulent wall-layer vortices with the body surface
controls turbulence production in boundary-layer flows by regulating the generation
of new coherent structures. Additional applications of vortex–body interaction are
described in two recent reviews of the subject by Doligalski, Smith & Walker (1994)
and Rockwell (1998).

The present paper is concerned with boundary-layer separation and ejection of
secondary vorticity induced by a vortex located near a circular cylinder, where the
vortex axis is nominally orthogonal to the cylinder axis and the vortex core radius is
much less than the cylinder diameter. This problem is particularly representative of
rotorcraft aerodynamic problems, where impact of rotor tip vortices on the vehicle
empennage, airframe and tail section during hover and low-speed flight causes strong
impulsive forces and moments on the vehicle (Sheridan & Smith 1980; Bi & Leishman
1990; Bi, Leishman & Crouse 1993). Vortex–cylinder interaction is also important in
problems such as turbulence–wall interaction in marine cable boundary layers (Neves,
Moin & Moser 1994) and unsteady loading in an array of parallel cylinders owing
to vortices shed from upstream cylinders, such as occurs in offshore platform risers,
groups of tall buildings, and heat exchanger tube bundles (Rockwell 1998). In these
latter applications, the relative orientations of the vortex and cylinder axes may range
from nearly parallel to nearly orthogonal.

Vortex–body interaction has been studied extensively for two-dimensional flows,
and certain of the processes observed in two-dimensional flows are also apparent (in
modified form) in three-dimensional vortex–cylinder interaction. Early experimental
studies of a vortex pair impinging on a flat wall show that the vortices do not follow
the path predicted by inviscid theory, but instead rebound from the wall and rise
upwards again after the initial impact (Harvey & Perry 1971; Barker & Crow 1977).
Numerical solutions of the two-dimensional Navier–Stokes equations by Peace &
Riley (1983) confirm the explanation, originally offered by Harvey & Perry (1971),
that this rebound phenomena is caused by secondary vortices that are shed from
the wall under the influence of the original vortex pair. A study of two-dimensional
boundary-layer development after impulsive introduction of a vortex near a flat
wall with uniform free-stream flow is given by Doligalski & Walker (1984). They
demonstrate that the existence of a stagnation point at the wall in the inviscid flow
solution leads to abrupt boundary-layer separation. Cases without a wall stagnation
point in the inviscid solution exhibit more gradual development of boundary-layer
separation. Peridier, Smith & Walker (1991a, b) examine analytically the formation
of a singularity in the solution of the unsteady boundary-layer equations in the
infinite-Reynolds-number limit for a two-dimensional vortex near a flat wall, and
compare the result with numerical solutions for finite Reynolds numbers. Interaction
of vortices of both positive and negative signs and of different strengths with a Blasius
boundary layer (with negative vorticity) is studied by Luton, Ragab & Telionis (1995).
They report that strong negative vortices induce the familiar ejection of (positive)
secondary vorticity from the boundary layer, but weaker negative vortices cause
only a downstream boundary-layer thickening and do not induce separation of the
boundary layer. Positive vortices cause an uplifting of the negative boundary-layer
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vorticity upstream of the vortex, again forming a secondary structure of opposite sign
to the original vortex. Numerous studies have been performed for axisymmetric vortex
ring impact on a flat wall and for two-dimensional vortex interaction with bodies of
different shapes, citations to which are given by Rockwell (1998) and Doligalski et
al. (1994). The main difference between normal vortex–cylinder interaction and the
two-dimensional vortex–wall interaction problem discussed above is the effect of wall
curvature in a direction nominally tangent to the vortex axis.

Inviscid solutions for normal vortex–cylinder interaction involve bending of the
vortex and deformation of the core cross-sectional shape as it nears the cylinder. The
inviscid vortex response is governed by two dimensionless parameters. The impact
parameter, I = 2πσ0U/Γ , is the ratio of the free-stream velocity U normal to the
cylinder (assuming the body to be fixed) to the maximum vortex swirl velocity
Γ/2πσ0, where σ0 is the initial vortex radius and Γ is the vortex strength. The
thickness parameter, T = D/σ0, is the ratio of the cylinder diameter D to the
vortex core radius. The inviscid bending of a vortex impinging on a circular cylinder
is examined by Affes & Conlisk (1993) and Marshall & Yalamanchili (1994) using
vortex filament theory. Affes & Conlisk (1993) show that the impinging vortex induces
an adverse pressure gradient in the axial direction on one side of the cylinder face.
The predicted pressure gradient is reported to agree well with experimental data for
the cases examined until the vortex approaches to within about one core radius of the
cylinder (Affes et al. 1993). Marshall & Yalamanchili (1994) examine vortex bending
for different values of the impact and thickness parameters. For thickness parameters
of about 5 or greater, the qualitative behaviour of the vortex can be classified as
either attractive or repulsive, depending on the value of the impact parameter. For
small impact parameters, the flow induced by the cylinder in the presence of the free-
stream normal velocity is weak and the vortex initially bends mostly in the spanwise
direction in response to its image vorticity. The spanwise deformation leads to a self-
induced velocity of the vortex directed towards the cylinder, giving the appearance
that the vortex is attracted to the cylinder. For large impact parameters, the flow
induced by the cylinder due to the normal free stream is large enough to overcome
the vortex self-induced velocity, causing the vortex to bend away from the cylinder.
The model used by Marshall & Yalamanchili (1994) includes axial vortex core flow
and variable core area, but the change in vortex core area owing to stretching by
the cylinder is found to be minor except at high values of the impact parameter
and after large amounts of stretching. Inviscid core shape deformation is examined
by Krishnamoorthy, Gossler & Marshall (1999) by solution of the vortex–cylinder
impact using the full Euler equations (in the velocity–vorticity formulation) for a case
with high impact parameter. Their results exhibit only slight core deformation (with
maximum aspect of ratio of about 1.5) up to the time of boundary-layer separation,
with little effect on the inviscid slip velocity at the cylinder surface. Krishnamoorthy
et al. (1999) also compare inviscid predictions for vortex bending with experimental
data and show that the inviscid solutions cease to be valid shortly after the onset of
boundary-layer separation from the cylinder. For cases with high impact parameter,
boundary-layer separation occurs when the vortex is much closer to the cylinder than
for cases with low impact parameter.

Several experimental studies of vortex–cylinder interaction have been performed
that present results for surface pressure variation and vortex trajectory prior to impact
with the cylinder. Bi & Leishman (1990) and Bi et al. (1993) examine rotor tip–vortex
interaction with a cylinder projecting from a body, modelling a helicopter with a
long tail boom in low-speed flight. Trajectories of the tip vortices, located using
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the shadowgraph technique, are correlated with surface pressure variation, measured
by an array of pressure taps along the cylindrical boom. Vortex impingement on
the cylinder is found to cause large transient loads on the cylinder and to induce
an adverse pressure gradient along the cylinder span. Using a pulsed laser sheet
and atomized mineral oil, Brand, Komerath & McMahon (1989) visualize rotor tip
vortices impinging upon a cylindrical body at different forward flight speeds. When the
vortex moves close enough to the cylinder, it is observed to lose definition, although a
weak low-pressure region is still detectable. Liou, Komerath & McMahon (1990) use
phase-averaged laser-Doppler velocimetry to detect formation of secondary vortex
structures during rotor tip vortex impact on a cylinder, where the vorticity sign within
the secondary structures is opposite to that within the incident vortex. A summary
of experimental results for rotor wake interaction with a cylinder is given by Kim &
Komerath (1995).

Affes, Xiao & Conlisk (1994) use three-dimensional boundary-layer equations to
calculate flow along a cylinder subject to forcing by a normal vortex. This investigation
is extended by Xiao, Burggraf & Conlisk (1997), who use an interactive boundary-layer
theory that accounts for second-order effects of the boundary layer on the inviscid
flow. In these studies, the vortex is modelled using inviscid filament theory. The flow
is initialized by a line vortex that is introduced impulsively. The vortex is observed to
induce a line of separation on the cylinder boundary layer, which is typified by two
nodal points at the ends and a saddle point near the midpoint of the separation line.
Xiao et al. (1997), in calculations with no background free-stream flow, show that the
time to separation changes by only about 10% as the Reynolds number is increased
by two orders of magnitude (106–108). The boundary-layer response therefore seems
not to be strongly dependent on Reynolds-number variation in this range. Affes et
al. (1998) compare results of boundary-layer computations and experimental flow
visualization for rotor vortex impact on a cylinder.

Krishnamoorthy et al. (1999) present flow-visualization results for the evolution of
the secondary vorticity after it is ejected from the cylinder, and for the interaction
of the secondary vorticity with the primary vortex. These experiments are performed
in water using the laser-induced fluorescence (LIF) technique. The core of a vertical
intake vortex is dyed red and the boundary layer of a cylinder towed normal to the
body is dyed yellow. Flow imaging is performed with horizontal and vertical laser light
sheets and with a laser volume. It is found that the time of onset of boundary-layer
separation from the cylinder depends strongly on the normal free-stream velocity
(via the impact parameter), with separation occurring when the cylinder is many
core diameters away from the cylinder for low impact parameters, but not until after
the vortex has bent around the cylinder for high impact parameters. At low impact
parameters, the tongue of secondary vorticity ejected from the cylinder is observed to
roll up into a distinct vortex loop that wraps around the primary vortex (figure 1a).
At high impact parameters, the vortex is quite close to the cylinder at the time of
separation, and the ejected tongue of vorticity appears to have more of a quasi-two-
dimensional form as it is drawn outward and wraps around the vortex (figure 1b).
The response of the primary vortex to a wrapped vortex loop is examined using both
flow visualization and direct computation by Krishnamoorthy & Marshall (1998).

Previous research on vortex–cylinder interaction (cited above) provides a clear un-
derstanding of the inviscid vortex response to the body, but our conception of the
viscous response of the body boundary layer and the subsequent evolution of the
ejected boundary-layer vorticity is more ambiguous. Available experimental data on
the ejected secondary vorticity comes either from pointwise velocity measurements or
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Figure 1. Schematic diagrams showing (a) loop-like and (b) quasi-two-dimensional forms of the
ejected secondary vorticity, based on observations from experimental flow visualization (Krish-
namoorthy et al. 1999).

from flow visualization. The former fail to capture the instantaneous vorticity struc-
ture, whereas the latter is, at best, only suggestive of the qualitative flow structure
because of the well-known differences between passive scalar and vorticity evolution
in three-dimensional flows (e.g. Kida & Takaoka 1994). The only numerical compu-
tations of this problem have been based on boundary-layer theory, and hence are
not valid past the time of the initial vorticity separation. Many of the main features
of the secondary vorticity dynamics remain unclear. For instance, under what exter-
nal free-stream flow conditions does the secondary vorticity roll up into a loop-like
structure, and what is the process that governs the formation of this loop? What is
the strength of the secondary vorticity loop in comparison to that of the primary
vortex, and how does the loop strength vary along the loop owing to roll up of the
ejected vortex sheet? What lengthscales are characteristic of the core radius and leg
separation distance of the secondary vortex loop? Does the secondary vortex loop
attach directly to the front face of the cylinder, or does it wrap around to the cylinder
back face? How does the growth of the secondary vortex loop affect the cylinder
surface pressure field and the separation topology?

This paper examines the evolution of the secondary vorticity field during vortex–
cylinder interaction with the use of a series of numerical computations of the incom-
pressible Navier–Stokes equations in the vorticity–velocity formulation. To accelerate
these computations, the velocity induced by the primary vortex is represented by a
vortex filament model. Important parameters characterizing the loop-like structure
formed by the secondary vorticity include the loop strength, the peak vorticity, and the
separation distance between the loop legs. The study examines how these parameters
and the formation of the loop structure itself are affected by background free-stream
velocity oriented in the positive and negative spanwise directions and in the direction
normal to the cylinder axis. The study also examines the boundary-layer separation
topology and surface pressure field and its modification by the ejected secondary
vorticity.
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An overview of the computational method used in the paper is given in § 2. In
§ 3, a description is given of the specific problem set-up, computational parameters
and validation runs for normal vortex–cylinder interaction. Section 3 also describes
the results of the vortex filament computations for the primary vortex and presents
a discussion of the limitations of this approximation. Results for impulsive vortex
start-up near a cylinder are described in § 4, and the effect of Reynolds number on the
ejected secondary vorticity structure in the impulsive start-up case is discussed in § 5.
Cases with free-stream velocity in the positive and negative spanwise directions are
examined in § 6. A case with free-stream velocity normal to the cylinder, and oriented
so as to advect the vortex toward the cylinder, is examined in § 7. Conclusions are
presented in § 8.

2. Computational method
The computational method used to evolve the secondary vorticity field solves the

Navier–Stokes equations for an incompressible, uniform density fluid in vorticity–
velocity form on a set of Lagrangian computational points using a tetrahedral
vorticity element (TVE) method (Marshall et al. 2000) in conjunction with a filament
approximation for the primary vortex. This method requires computational points
only within the vorticity-containing parts of the flow and, because it is Lagrangian,
it has little or no numerical dissipation and naturally adapts to the evolving vorticity
field. The tetrahedral vorticity elements have the advantages, compared to more
traditional vortex blob methods, that they can adopt highly anisotropic shapes and
they do not carry vorticity over the body surface. These advantages allow the TVE
method to compute boundary layer flows more efficiently and to satisfy the body
boundary conditions more accurately than previous vortex methods.

In the TVE method, the fluid velocity u is written using the Helmholtz decom-
position as the sum of an irrotational part uI , induced by dilatation and boundary
conditions at infinity, and a rotational part uR , induced by the vorticity field ω ≡ ∇×u
according to the Biot-Savart integral

uR(x, t) = − 1

4π

∫
V

r × ω(x′, t)
r3

dν ′, (1)

with r ≡ |r| ≡ |x− x′|. The irrotational part ul is given by a uniform flow (set by the
boundary conditions far from the body) plus the contribution of source panels on
the body necessary to maintain the no-penetration condition. In an ideally resolved
viscous flow, with no errors arising from discretization of the vorticity field and
infinitesimal timestep, the contribution of the source panels would approach zero.

When using a Lagrangian method for a viscous flow calculation, it is convenient
to advect the computational points with the sum of the local fluid velocity u and a
diffusion velocity v, where the diffusion velocity serves to maintain coverage of the
diffusing vorticity support by the Lagrangian computational points. The total time
derivative of vorticity (dvω/dt) for a point advected by the sum u + v, defined by
dv/dt ≡ d/dt+ (v · ∇), is given by the vorticity transport equation as

dvω

dt
= (ω · ∇)u+ (v · ∇)ω + ν∇2ω, (2)

where ν is the kinematic viscosity.
An expression for diffusion velocity for two-dimensional flows is given by Ogami
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& Akamatsu (1991) as

v = −ν∇(lnω), (3)

where ω is the vorticity magnitude. Equation (3) has the property that the circulation
is invariant about any circuit C that is material with respect to the velocity field
u + v in a two-dimensional flow (Kempka & Strickland 1993). In three-dimensional
flows, (3) does not have this property owing to the effect of curvature of the vortex
lines. It is noted, however, that any choice of diffusion velocity is acceptable if it
can be demonstrated to adequately cover the vorticity field as it diffuses outward
in time. In particular, for high-Reynolds-number laminar flows past a body, most
of the viscous diffusion occurs in the boundary layer and the diffusion velocity is
required to move points principally in the direction normal to the body surface. For
such cases, the diffusion velocity expression (3) maintains coverage of the vorticity
field. The adequacy of this expression can also be directly verified from the fact that
the vorticity decays gradually at the edges of the tetrahedral mesh connecting the
Lagrangian computational points in the solutions presented in §§ 4–7.

The force on an immersed body with surface S and outward unit normal n is given
by the sum of the pressure and viscous shear forces as

F = −
∫
S

(pn+ µn× ω) da. (4)

A Poisson equation for the stagnation pressure B can be obtained by taking the
divergence of the Navier–Stokes equation as

∇2B = ∇ · (u× ω), (5)

where B ≡ (p− p∞)/ρ+ (κ− κ∞), κ ≡ 1
2
u · u is the kinetic energy per unit mass, and

p∞ and κ∞ are constants. Assuming that B → 0 as r → ∞ (for external flow with
uniform velocity at infinity), the Green’s function solution of (5) for any x ∈ V can
be written as

2πB(x)−
∫
S

B
n · r
r3

da′ = −
∫
S

[
ν
n · (r × ω)

r3
+

1

r
n · ∂u

∂t

]
da+

∫
V

r · (u× ω)

r3
dν, (6)

where the second term in the surface integral on the right-hand side of (6) vanishes
for a fixed body.

Numerical approximation of volume integrals of the convolution form

g(x) =

∫
V

f(x′)K (x− x′) dν ′, (7)

where K (r) = r/r3, is necessary in order to compute the velocity field from (1) and to
compute the volumetric source term in the boundary-integral equation (6) for body
surface pressure. In the TVE method, a tetrahedral mesh is used to interpolate the
vorticity field in the region surrounding a set of Lagrangian computational points.
The computational points are advected by the sum of the local fluid velocity and the
diffusion velocity, or

dxn
dt

= u(xn, t) + v(xn, t). (8)

A tetrahedral mesh is refitted to these Lagrangian points at each timestep using a fast
three-dimensional Delauney triangularization algorithm similar to that of Borouchaki
& Lo (1995). The mesh formation procedure starts with a two-dimensional Delauney
algorithm to form triangular panels connecting a set of body computational points
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Figure 2. Schematic representation showing different methods used to compute velocity (at a point
in the centre of the figure): A, analytic surface integration (black); B, 5-point Gaussian quadrature
(striped); C, 1-point Gaussian quadrature (white); and D, box-point multipole expansion (grey
boxes).

on the surface S , which are then used as the start of an advancing front to form the
tetrahedral volume mesh.

Integrals of the form (7) are evaluated using a combination of different methods,
illustrated schematically in figure 2, which are selected in an adaptive manner in
order to optimize computation speed while maintaining a prescribed accuracy. The
selection method examines whether the distance between the ‘source’ tetrahedron and
the ‘target’ point x exceeds a critical value, which is determined using a modification
of the analytical error estimate of Salmon & Warren (1994). The tetrahedra are
divided into a set that contributes ‘directly’ and a set that contributes ‘indirectly’ to
the integral for a given target point, and the direct interaction set is further divided
into three subsets.

For the 10–100 tetrahedra closest to the target point, we use an analytical solution
that assumes that f(x) has a constant value fm over each tetrahedron, for which case
the contribution of the mth tetrahedron can be rewritten as,∫

Vm

f(x′)K (x− x′) dν ′ ∼=
M∑
m=1

fm

∫
Sm

n′

r
da′, (9)

where Sm denotes the tetrahedron bounding surface and n is the outward unit normal
of Sm. The surface integral in (9) is the same as that which arises in computing
the potential due to a source distribution of uniform strength and can be evaluated
analytically (Newman 1986) for any piecewise planar surface Sm.

The contribution of tetrahedra at a moderate distance from the target point is
computed using a Gaussian quadrature approximation of the form∫

Vm

f(x′)K (x− x′) dν ′ ∼=
G∑
t=1

f(ξl)
rl

r3
l

WlVm, (10)

where the G Gauss points are located at positions ξl and have weights Wl . The
volume of the mth tetrahedron is denoted by Vm, and rl = x − ξl is the position
vector of the target point x relative to the position of the lth Gauss point. Five Gauss
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points are used to obtain a cubic approximation for roughly the 103 next closest
tetrahedra, and one Gauss point is used to obtain a linear approximation for roughly
104 more distant tetrahedra. Values of weights and positions of the Gauss points for
generalized tetrahedra are given by Zienkiewicz (1977).

For the set of tetrahedra that contributes indirectly to the integral (7), a box-
point multipole expansion algorithm is used to accelerate the computation. The
computational points in this set are sorted into a tree-like family of rectangular boxes
using a Clarke–Tutty (1994) type box generation algorithm. In this algorithm, all
computational points are first placed in a single box, and the box is divided in two
along the Cartesian direction for which the distance between computational points
is greatest. This division process is repeated for each generation of boxes, keeping
approximately the same number of points in each box of a given generation, until
the number of points in the smallest boxes is less than a specified value (typically
about 10). An ‘interaction list’ is then generated for each target point, which identifies
the largest boxes contributing to the integral at that point for which a multipole
expansion of the form

gl(x) =
1

4π

P∑
k=0

P−k∑
n=0

P−n−k∑
m=0

(−1)m+n+k

m!n!k!
Il,mnk

∂m+n+k

∂xm∂yn∂zk

(
rl

r3
l

)
(11)

yields an error less than a prescribed value, where P is an integer that specifies the
maximum order of the multipole expansion. The benefits of the multipole expansion
procedure rapidly diminish when third- and higher-order terms are included for
three-dimensional computations, so in the current computations we set P = 2. In
(11), the subscript l identifies a box with centroid cl (weighted by computational point
positions) and rl ≡ x−cl is the position of the target point relative to the box centroid.
The term Il,mnk in (11) denotes the moment of the source field f(x) contained in the
box relative to the box centroid. The moments are computed by associating each
tetrahedron with the box tree of one of its nodes, and then analytically integrating a
linear approximation for the source distribution f(x) multiplied by a given moment
arm to obtain the contribution of each tetrahedron to the total box moment. The
speed-up in the indirect method is possible because the box moments are independent
of the target point (and thus need to be computed only once for each timestep)
and the derivatives in (11) depend only on the box centroid positions (and not on
the positions of the individual computational points within the box). For the current
computations, the indirect procedure is used to account for the contributions of about
90% of the tetrahedra.

Numerical differentiation on the irregularly spaced Lagrangian computational
points is necessary to compute the derivatives in the stretching and diffusion terms of
the vorticity transport equation (2) and to compute the diffusion velocity from equa-
tion (3). Differentiation is performed in the current paper using a three-dimensional
extension of the ‘moving least-square’ algorithm described by Marshall & Grant
(1997). We consider a function f(x, t) whose first and second derivatives are desired at
a point xm. A local interpolation of f(x, t) in the region around xm is obtained by fitting
a quadratic polynomial qm(x, t) to the values fn of f(x, t) on nearby computational
points xn in the form

qm(x, t) = fm +

9∑
i=1

Fm,i Wm,i(x− xm), (12)

where Fm,i are undetermined coefficients and Wm,i(x − xm) are prescribed linear and
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quadratic basis functions. Values of the coefficients Fm,i are obtained by minimizing a
localized least-square error measure Em, given by

Em ≡
N∑
n=1

Lmn[fn − qm(xn, t)]
2, (13)

where the ‘localization parameter’ Lmn is set equal to unity for all points n that are
nodes of tetrahedra connected to computational point m (the ‘first neighbours’ of m)
or are nodes of tetrahedra that are connected to the first neighbours (the ‘second
neighbours’ of m). For all other points n, the localization function Lmn is set to zero.
Minimization of Em with respect to each of the coefficients Fm,i yields a 9× 9 system of
linear equations for Fm,i. After solving for Fm,i, the derivatives of fm can be computed
simply by differentiating the polynomial fit (12). As shown by Marshall & Grant
(1997), this differentiation method is accurate to second order for uniformly spaced
points and has accuracy between first and second order for irregularly spaced points.

The boundary condition for vorticity at the body surface is specified by balancing
vorticity associated with surface slip with the total vorticity transported into the fluid
volume during the timestep. Vorticity transport into the fluid volume occurs both by
viscous diffusion normal to the body surface and by change in the vorticity contained
within tetrahedra connected to body computational points in response to a change in
the value of the surface vorticity. The former effect was accounted for in the vorticity
boundary condition formulation proposed by Koumoutsakos, Leonard & Pépin 1994
using the vortex blob method, but the latter effect is unique to the use of connected
tetrahedral elements. The vorticity boundary condition is set by first evaluating the
vortex sheet strength γm associated with the slip velocity γm × n at a body point xm.

The total vorticity associated with slip at xm is γmÂm, where Âm is one-third the area
of all triangular panels connected to body point xm. A change ∆ωm in vorticity at xm
causes a change in the total vorticity associated with tetrahedra in the flow of V̂m∆ωm,
where V̂m is a quarter of the sum of the volume of all tetrahedra attached to body
point xm. The amount of vorticity to diffuse into the flow from the region on the
body surface with area Âm surrounding point xm during the time interval (t, t+ ∆t) is

−νÂm∆t(∂ω/∂n)|m. Balancing the slip vorticity with the vorticity transport from these
two mechanisms gives

γmÂm = V̂m∆ωm − νÂm∆t(∂ω/∂n)|m. (14)

The normal gradient of vorticity to the surface S can be evaluated as a sum of
differences of vorticity at the volume and body computational points using the
moving least-square formulation. The resulting equation yields an implicit solution
for the boundary vorticity, which is solved using a fixed-point iteration procedure.
This procedure converges very rapidly, with a relative error of less than 0.01% in
3–4 iterations. Typical values of the surface slip velocity depend on the spatial and
temporal resolution. For the computations reported in this paper, the surface slip
velocity is maintained with a root-mean-square value of about 0.5% and maximum
slip of about 2%, of the maximum velocity outside the boundary layer.

3. Problem set-up
A summary of the computational cases for normal vortex–cylinder interaction is

given in table 1, which includes two different vortex Reynolds numbers, Re = Γ/ν,
and four different free-stream conditions. The initial vortex orientation relative to the
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Figure 3. Diagram showing initial condition for normal vortex–cylinder interaction problem.

(Ux,Uy,Uz) Re = 500 Re = 1500

(0, 0, 0) Case 1 Case 2
(0, 0, U) X Case 3
(0, 0,−U) X Case 4
(0, U, 0) X Case 5

Table 1. Summary of vortex Reynolds numbers and free-stream velocities examined.

cylinder used in all computations (except case 5) and the coordinate system are shown
in figure 3. All parameters are non-dimensionalized using the cylinder diameter D as a
lengthscale and D2/Γ and ρD3 as time and mass scales, respectively. The vortex core
radius is set to 0.1 for all cases, which corresponds to a thickness parameter of T = 10.
For a zero free-stream condition, vortex Reynolds numbers of 500 (case 1) and 1500
(case 2) are examined. For the Re = 1500 case, three additional free-stream conditions
are considered: case 3, flow in the direction of the positive z-axis, such that vorticity
within the ambient cylinder boundary-layer is oriented in the negative x-direction
(opposite to that within the primary vortex) near the cylinder leading edge; case 4,
flow in the direction of the negative z-axis, such that vorticity within the ambient
cylinder boundary-layer is oriented in the positive x-direction (the same as that within
the primary vortex) near the cylinder leading edge; case 5, free-stream flow in the
direction of the positive y-axis, advecting the primary vortex toward the cylinder. The
free-stream velocity magnitude (U = 0.334) is the same in cases 3–5 and is chosen
to yield, for case 5, an impact parameter equal to the high impact parameter case
(I = 0.21) examined using inviscid computations and flow-visualization experiments
by Krishnamoorthy et al. (1999).
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Although the value of impact parameter considered in the paper is typical of many
applications, such as those discussed in § 1, the values of the vortex Reynolds number
are much smaller than would ordinarily be found in many of these applications.
For instance, estimates of vortex strength and impact parameter for the problem of
helicopter main rotor interaction with the tail section (Krishnamoorthy & Marshall
1998) give impact parameters in the range 0.04 < I < 0.9 and vortex Reynolds
numbers of the order of Re ∼= 0.1(VR/ν) as the helicopter advance ratio µ spans
the range 0 < µ < 0.4 typical of normal flight conditions. Here, V is the helicopter
flight speed, R is the rotor radius and ν is the kinematic viscosity. Choosing V =
50 m s−1, R = 10 m and ν = 1.5 × 10−5 m2 s−1 gives a typical rotor wake vortex
Reynolds number of Re ' 3× 107. As mentioned in § 1, previous computations using
boundary-layer theory by Affes et al. (1994) indicate that the normal vortex–cylinder
interaction problem is insensitive to variation of Reynolds number over several orders
of magnitude.

The primary vortex is represented using an inviscid filament model (Knio &
Ghoniem 1990), in which the vortex filament is discretized by overlapping Gaussian
blobs whose amplitudes vary in proportion to the local stretch. Inviscid vortex bending
in the presence of the cylinder is computed separately, and the velocity induced by
the vortex is treated as a prescribed forcing field in the boundary-layer calculation.
This approach neglects vortex core shape deformation and bending induced by the
ejected secondary vorticity, which are observed in flow-visualization experiments by
Krishnamoorthy et al. (1999) to be small during the initial stages after boundary-layer
separation (as the secondary vorticity wraps approximately once around the primary
vortex) for cases similar to those considered in the current paper. The boundary-layer
calculations by Affes et al. (1994) and Xiao et al. (1997) similarly use a vortex filament
model to approximate the forcing from the primary vortex. Use of the inviscid filament
model for the primary vortex allows the computations for the cylinder boundary layer
response and the initial stages of secondary vorticity ejection to be performed with
a larger timestep than would otherwise be possible (by a factor of about 5) and it
speeds up formation of the tetrahedral mesh.

For cases 1–4, the vortex filament is initialized as a straight line oriented in the
x-direction (figure 3), separated by a distance d = 0.3 from the cylinder leading
edge. The vortex filament is resolved over an axial length of 4 using 160 vortex
blobs, and both ends of the computed section of the vortex filament are connected
to semi-infinite straight filaments (Dhanak 1981). For case 5, we attempt to account
for the experimentally observed bending of the vortex as it is advected toward the
cylinder. For this reason, the vortex filament computation is started at an earlier time
(t = −2.64) in case 5 than the boundary-layer computation (t = 0), so that at the start
of the boundary-layer computation, the vortex filament already exhibits significant
bending. The times for start of the filament and boundary-layer calculations are
selected to be well before substantial vortex bending and at a time slightly before
boundary-layer separation, respectively, based on the experimental and numerical
results of Krishnamoorthy et al. (1999). The number of vortex blobs used to discretize
the filament in case 5 is increased to 320, twice that used for cases 1–4, in order to
resolve greater bending and stretching of the filament. For all cases considered,
the cylinder surface is discretized using 2160 triangular source panels connected to
1116 body computation points. The spacing between the body computation points is
uniform in the spanwise direction, but adjusted in the azimuthal direction such that
the distance between adjacent points near the front of the cylinder is half that in the
rear of the cylinder.
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Figure 4. Results for bending of vortex filament for case with initial separation distance d = 0.3
and no free-stream velocity at times – – –, t = 0; – · –, t = 1; ——, t = 2.

The flow is assumed to be periodic in the spanwise direction. In computing the
boundary layer vorticity, two periods of the flow domain and one period of the body
source panels on each side of the computed domain are used in the Biot-Savart
integral. Test calculations using up to five periods of the vorticity field on each side
show no discernable difference from the results with two periods. For the filament
computations, three periods of the vorticity field and two periods of the body are
used on each side of the computed flow domain.

It is desirable that the period length λ be sufficiently large compared to the relevant
lengthscales associated with the secondary vorticity structure so that flow with periodic
spanwise boundary conditions is at least qualitatively similar to flow with a single
primary vortex impacting an infinitely long cylinder. The most important lengthscale
influencing the ejection of secondary vorticity from the cylinder is the vortex–cylinder
separation distance, d. The lengthscales associated with the secondary vorticity field
after it is ejected from the cylinder surface, such as the loop leg separation distance
and the vorticity ejection distance from the body, are also found in the computations
to be of O(d). The maximum value of d occurs in the initial configuration, at which
time d/λ = 0.15 for all cases considered.

Vortex filament computations are performed, in order to establish the forcing of
the boundary layer by the primary vortex, with the vortex initially oriented parallel
to the x-axis and separated from the cylinder leading edge by a distance d. Two
cases are considered: (i) d = 0.3 and no free-stream velocity, and (ii) d = 1.5 and
a free-stream velocity of U = 0.334 normal to the body. Cases 1–4 in table 1 use
filament calculation (i), where the filament is advected along the cylinder axis for
cases 3 and 4. Case 5 uses filament calculation (ii). The results for the two filament
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Figure 5. Results for bending of vortex filament for case with initial separation distance d = 1.5
at t = −2.64 and with free-stream velocity U = 0.334 normal to the cylinder, shown at times – – –,
t = 0; – · –, t = 1; ——, t = 2.

calculations (shown in figures 4 and 5) are typical of the behaviour noted by Marshall
& Yalamanchili (1994) for low- and high-impact-parameter cases. In calculation (i),
the filament first bends in the cylinder axial direction owing to the velocity induced
by its image. The self-induced velocity of the bent vortex then causes it to bend
toward the cylinder, giving the appearance that the vortex is attracted to the cylinder.
The amplitude of vortex bending is small during the time considered in the cylinder
boundary-layer computation. In calculation (ii), the vortex is deflected both in the
cylinder axial direction by its image and in the direction opposite to the free-stream
velocity owing to the velocity induced by the cylinder in response to the free-stream
flow. The latter deflection gives the appearance that the vortex is repulsed from the
cylinder. During the time considered in the boundary-layer computation (0 6 t 6 2),
the vortex wraps around the cylinder and nearly reconnects on the cylinder back face.

The boundary-layer computations are initialized using five fixed ‘Euler layers’ of
staggered computation points, such that the first layer is formed of the body points,
the second layer is located at a fixed distance above the panel centroids, the third
layer is located above the body points, and so on. The Euler layer points evolve in the
same manner as the Lagrangian points, as described in § 2, but are then interpolated
back to their initial position at the end of each timestep. The use of an Euler layer of
this type is not absolutely necessary for the numerical method described in § 2, since
the differentiation and integration algorithms function equally well with regularly
and irregularly spaced points, but having such a layer helps to maintain a minimum
resolution of the boundary layer all around the body.
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Above the Euler layer, the boundary-layer flow is initialized using two staggered
layers of Lagrangian computation points, which are advected both by the fluid
velocity and by the diffusion velocity. No regridding of the Lagrangian points above
the Euler layer is used. A new Lagrangian computation point is added when the
distance between the top of the Euler layer and the nearest Lagrangian point above
the panel exceeds a specified distance (0.0183). Lagrangian computational points with
separation distance less than a specified value (0.0092) are amalgamated by removing
both points and creating a new point with vorticity equal to the average of that of
the two amalgamated points. In fitting a tetrahedral mesh to the computation points,
it is necessary to limit the size of the tetrahedral elements by deleting tetrahedra
whose maximum side length exceeds a specified value. In the current computations,
the maximum tetrahedral side length is set as 0.3 within the cylinder boundary layer,
but is reduced to 0.1 for the ejected vorticity outside of the boundary layer (outside of
a radial distance of 1.05 from the cylinder axis). This reduction in value of maximum
tetrahedral side length for the ejected vorticity computation points is done to eliminate
tetrahedra that might span from points in the ejected vorticity region to points in the
cylinder boundary layer. The total number of tetrahedra varied between about 70 000
near the start to about 200 000 near the end of the runs.

The cylinder boundary layer is initialized using an exponential vorticity profile
which decays by a factor of e over a distance of 0.055. The strength of this exponential
profile is adjusted by an iterative process to enforce the no-slip condition on the body
panel centroids at the initial time.

A second-order predictor–corrector method is used to advance the boundary-layer
computations in time, with the timestep held fixed at 0.01 for all cases. Between 5
and 15 diffusion substeps are used within each of the larger timesteps to satisfy the
stability restriction

2ν ∆t

s`2
< 1, (15)

where ` is a measure of the minimum distance between any two computational points
and s is a parameter (called the ‘stability parameter’) that is found empirically to be
about 7–9. In the current computations, the number of diffusion substeps is adjusted
adaptively to satisfy (15) with the stability parameter set to unity.

Sensitivity of the computations to selection of timestep and spatial resolution was
tested by repeating the first half of the computation for case 1 with a high-resolution
run, which used approximately twice as many body source panels (4576) and slightly
less than half the timestep (0.004). The high-resolution calculation was terminated at
time t = 0.75, at which point the boundary layer has separated and secondary vorticity
has been pulled outward from the body and has formed a distinct structural form that
is beginning to wrap around the primary vortex. It is the first part of the computation,
during the initial separation and ejection of vorticity from the body, in which the
results are most sensitive to computational resolution. Other computations with fewer
computational points indicate that the long-time evolution of the secondary vorticity
structure is insensitive to the numerical resolution and to the initialization of the
cylinder boundary layer. At the ending time of the high-resolution calculation, the
boundary layer is resolved by approximately 250 000 tetrahedra in the high-resolution
computation and by 160 000 tetrahedra in the computation reported for case 1.
The two computations are qualitatively nearly identical in terms of separation onset
and location. Quantitative comparisons between the two runs at the ending time
(shown in table 2) indicate differences of only a few per cent in a variety of flow
diagnostics.
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High-resolution Percentage
Quantity Case 1 comparison run difference

Maximum vorticity magnitude, |ω|max 21.8 22.4 2.7

Cylinder normal force, Fy −0.0154 −0.0162 4.9

Enstrophy, E = 1
2

∫
V
ω2 dν 4.5 4.3 4.4

Helicity, J =
∫
V
u · ω dν −0.0239 −0.0223 6.7

Table 2. Quantitative results at time t = 0.75 for case 1 and a high-resolution comparison
computation.
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Figure 6. Plot of the cylinder pressure field for case 2 at the initial time, showing (a) pressure
contours on the front of the cylinder and (b) pressure variation along the cylinder leading edge.
The projection of the vortex filament is indicated by arrows in (a), and the contour levels vary in
eight even increments from 0.02 to −0.2. Regions with p < −0.2 are shaded grey. Regions of (I)
favourable and (II) adverse axial pressure gradient are marked in (b).

4. Results for impulsive vortex start-up at Re = 1500

A vortex filament in the proximity of a cylinder with no free-stream velocity induces
a minimum of the pressure field on the cylinder surface directly under the vortex.
When the vortex is columnar and oriented normal to the cylinder, as shown in figure
3, and flow is inviscid, the induced pressure field is nearly symmetric on the two sides
of the cylinder because of the symmetry in velocity magnitudes. In a viscous flow with
a vortex started impulsively at a given position above a cylinder, the surface pressure
field is close to that predicted by inviscid theory at the initial time. For instance, a
surface pressure contour plot is shown in figure 6(a) for the viscous flow computation
in case 2 (see table 1) at the initial time, which shows approximate symmetry of the
pressure field on the two sides of the vortex filament (indicated by arrows). Since
the direction of the velocity induced by the vortex near the surface has everywhere a
positive z-component, it is clear that the axial pressure gradient within the cylinder
boundary layer is favourable in the region z < 0 and adverse in the region z > 0. The
two regions of (I) favourable and (II) adverse axial pressure gradient are indicated in a
plot of the pressure along the cylinder leading edge versus axial distance in figure 6(b).

The cylinder boundary layer responds to the vortex-induced pressure field by
formation of backflow in the axial direction within the adverse pressure gradient
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Figure 7. Profiles of axial velocity within the cylinder boundary layer as a function of the normal
distance, ynorm ≡ 0.3 − y, at five positions along the cylinder leading edge for case 2 at times
(a) t = 0; (b) t = 0.6. The profiles are located at �, z = −0.4; e, z = −0.2; ——, z = 0; – · –,
z = 0.2; – – –, z = 0.4.

region, followed by development of a separation line on the body and ejection of
boundary-layer vorticity into the flow. In various test computations with different
initial conditions, the time to separation is observed to be sensitive to the initial
vorticity profile in the boundary layer, although the qualitative behaviour and the
characteristics of the ejected vorticity are the same. This observation may account
for the differences in computational predictions of separation onset and experimental
observations reported by Affes et al. (1998). Boundary-layer velocity profiles at five
locations along the cylinder leading edge at the initial time and at a time following
separation are shown in figure 7 for the initial condition reported in § 3. At the initial
time, the velocity magnitude profiles in the boundary layer are symmetric about the
vortex axis. This symmetry quickly breaks down as surface vorticity magnitude along
the leading edge decreases in the adverse pressure gradient region above the vortex,
and increases in the favourable pressure gradient region below the vortex. Flow
reversal along the cylinder leading edge is first observed to occur just before time
t = 0.2, and the flow reversal region grows larger and the reverse velocity magnitude
increases with time.

Plots of surface limiting streamlines and vortex lines over the half of the cylinder
facing the vortex are given in figures 8 and 9 at three times. The limiting streamlines
are obtained using the velocity at the first computational point above the surface
within the Euler layer. Both streamlines and vortex lines are symmetric about the
plane z = 0 at the initial time. A node in the limiting streamlines becomes apparent
just above the vortex filament at time t = 0.2, with a saddle point just above the node.
In the time interval 0.2 6 t 6 0.6, the stable node remains fixed but the saddle moves
upward until the node receives backflowing fluid from the entire cylinder surface
above the node. The total number of nodes on the cylinder is at all times equal to
the number of saddle points, as required by the topological constraint for flows with
bodies having periodic end conditions (Tobak & Peake 1982). A focus point forms
in the vortex lines at time t = 0.6 at the same position as the node in the limiting
streamlines. Starting with time approximately t = 0.8, the node in the streamlines
bifurcates into stable nodes joined by a line of separation, with a saddle point at the
midpoint of the separation line. The two nodes gradually move apart with time. The
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Figure 8. Limiting streamlines on the cylinder surface for case 2 at times
(a) t = 0; (b) t = 0.6; (c) t = 1.4.
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Figure 9. Vortex lines on the cylinder surface for case 2 at times (a) t = 0; (b) t = 0.6; (c) t = 1.4.

focus in the surface vortex lines similarly bifurcates into two foci with rotation of
opposite sign, located at the same positions as the nodes in the limiting streamlines.
The observed topological structure of the limiting surface streamlines and vortex lines
in the vicinity of the vorticity ejection location is in agreement with that observed
in the computations of Affes et al. (1994) using the boundary-layer equations and
is similar to the pattern referred to as an ‘owl face of the second kind’ by Perry &
Chong (1987), who analysed this structure using critical-point theory.

A contour plot of the vorticity magnitude on the cylinder surface at time t = 1.2 is
given in figure 10, on which is superposed indicators of major topological features of
the surface limiting streamlines. A saddle point is denoted by X and a nodal point is
denoted by a circle with N above it. The separation curve is indicated by a heavy solid
line. A region of high vorticity magnitude is located directly below the vortex filament,
corresponding to vorticity oriented primarily in the negative x-direction (opposite in
sign to that within the vortex filament) generated because of the strong velocity in the
z-direction induced by the vortex filament. We recall that the vortex lines within the
secondary loop must fan outward into the cylinder boundary layer near the points of
loop attachment to the body, in order to satisfy the condition ω · n = 0 at the surface.
Since the swirling velocity is low within the inner part of the secondary vortex loop
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Figure 10. Vorticity magnitude contours on the cylinder surface at time t = 1.4 for case 2. Surface
topological features are indicated using N for a node (with a circle marking the node position), X
for a saddle, and a bold curve for the separation line connecting two nodes.

core, the two nodes corresponding to loop attachment points are located in regions
of low vorticity magnitude.

Evolution of the ejected secondary vorticity support over time can be observed in
figure 11, which shows velocity vectors attached to Lagrangian computational points
in a thin slice of the computed flow, in the range −0.2 6 x 6 0.2. At time t = 0.6,
the boundary layer exhibits a pronounced bulge centred at a point above the cylinder
surface at about a 45◦ angle from the primary vortex filament. At later time, the
secondary vorticity is drawn outward from the cylinder boundary and wraps around
the primary vortex. The minimum separation distance between the primary vortex and
the secondary vorticity structure decreases gradually as the fluid is advected around
the vortex. Radial entrainment of the ejected vorticity into the primary vortex is also
observed in figure 11, which is caused by the self-induced velocity of the secondary
vorticity structure.

A contour plot of the y-component of vorticity, ωy , and corresponding streamlines
in an (x, z)-planar slice at y = 0.2, near the base of the secondary vorticity structure,
are plotted in figure 12 at time t = 1.4. The vorticity field has the form of a pair
of counter-rotating vortices centred directly above the nodal points in the streamline
plots, which correspond to cross-sections of the secondary vorticity loop. These
counter-rotating vortices strengthen and move farther apart with time. The sign of the
vorticity within these cross-sections in figure 12 indicates that the self-induced velocity
of the secondary vorticity structure is oriented radially inward toward the primary
vortex, which is consistent with the observed radial entrainment of the Lagrangian
points. A three-dimensional view of the iso-surface with vorticity magnitude ω = 5
is shown in figure 13 in an orthographic view in the (x, z)-plane. The form of
the secondary vorticity structure observed in the computations is similar to that
described by Krishnamoorthy et al. (1999) for low-impact-parameter cases based on
flow visualization experiments.

An important issue in evaluating the limitations of inviscid computational methods
for vortex–body interaction, such as commonly used in rotorcraft design, involves the
significance of the ejected secondary vorticity on the surface pressure field and net
force on the body. To examine this issue, the surface pressure field on the cylinder
surface for both inviscid and viscous flow cases is plotted in figure 14 at time t = 1.4,
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Figure 11. Velocity vectors attached to the Lagrangian computational points in a thin slice centred
on the (y, z)-plane (−0.2 6 x 6 0.2) at times (a) t = 0.6; (b) t = 1.0; (c) t = 1.4; (d) t = 1.6. The
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Figure 12. Streamlines and contours of ωy over a planar slice of the flow at y = 0.2, near the base
of the ejected vorticity structure, for case 2 at time t = 1.4. Regions with ωy < −1.1 are shaded grey.

at which point the secondary vorticity loop has wrapped approximately three-quarters
of the way around the primary vortex. The pressure contours in the inviscid-flow case
remain roughly symmetric on the two sides of the vortex filament, with a region of
minimum pressure located directly below the vortex filament. The pressure field is
quite different in the viscous-flow case. The low-pressure region moves upward into
a U-shaped region above the vortex filament, and a high-pressure region forms just
below the vortex filament near the centre of the cylinder face. Moreover, the region
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Figure 13. Orthographic view in the (x, z)-plane of an iso-surface of vorticity magnitude (ω = 5)
for case 2 at time t = 1.4, showing the loop-like form of the ejected secondary vorticity structure.
The cylinder surface is indicated by light grey shading and the primary vortex position is indicated
by a solid black line.
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Figure 14. Pressure contours on the cylinder surface for case 2 at time t = 1.4 for (a) inviscid and
(b) viscous flow calculations. The projection of the vortex filament is indicated by arrows.

of lowest pressure bifurcates and moves to positions on the cylinder surface below
which the secondary vortex loops attach to the cylinder boundary layer.

The streamlines in the (y, z)-plane at x = 0, bisecting the cylinder directly between
the two legs of the secondary vortex loop, are shown in figure 15 at the initial time and
at time t = 1.2. At the initial time, the boundary layer is attached and the secondary
vorticity has essentially no effect on the flow field external to the boundary layer.
The external velocity field is observed to be symmetric about the vortex filament
location and to have a positive axial component of velocity close to the cylinder. At
time t = 1.2, the secondary vorticity has wrapped over half-way around the primary
vortex. The symmetry of the external flow field is broken and a downward reverse flow
is observed in the region above the primary vortex. A dividing streamline between the
positive and negative axial velocity regions projects out of the body at approximately
the location of the saddle point in the surface streamlines shown in figure 10.
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Figure 15. Streamlines in the (y, z)-plane at x = 0 (the plane bisecting the two legs of the secondary
vortex loop) for case 2 at times (a) t = 0, and (b) t = 1.2, showing the effect of the ejected secondary
vorticity on the velocity field external to the boundary layer.
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Figure 16. Time variation of the total force component normal to the cylinder axis (y-direction)
for 4, inviscid flow, and e, viscous flow.

The net force acting normal to the cylinder (in the y-direction) is plotted for both
inviscid- and viscous-flow cases in figure 16. For viscous flow, only about 2–5% of
the total force is due to shear at the boundary. In contrast to the pressure field, the
net force exhibits only moderate differences between the viscous- and inviscid-flow
computations for the case with no free-stream velocity, with the force magnitude for
inviscid flow about 20% higher than that for viscous flow. The most significant effect
of the secondary vorticity on the net cylinder force for this case may occur not through
its direct action on the pressure force, but rather indirectly through interaction of
the secondary vorticity with the primary vortex. This interaction was precluded from
consideration in the present study by use of the filament theory approximation for the
primary vortex, but it has been shown in previous work using both experimental and
computational methods (Melander & Hussain 1993; Marshall 1997; Krishnamoorthy
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contours used for calculation of circulation Γs and the definition of the vortex loop separation
distance l. Regions with ωy 6 −1.0 are shaded grey. Variation of vorticity versus distance on the
line drawn in (a) is plotted in (b), showing two peaks of vorticity with ωy of opposite sign.

& Marshall 1998; Krishnamoorthy et al. 1999) that the velocity field induced by the
secondary vorticity structures can lead to bending, core shape deformation, and axial
wave formation on the primary vortex over a long time interval. If the secondary
vorticity is sufficiently strong, it is observed to eventually cause vorticity stripping
from the primary vortex, which in some cases is followed by vortex breakdown. The
pressure does not vary linearly with the free-stream velocity field, and, in other cases
examined, the secondary vorticity has been observed to have significant direct effect
on the net cylinder force (Gossler 1999). Also, even when the direct effect of the
secondary vorticity on the cylinder force is small, modelling of its interaction with the
primary vortex requires knowledge of the structural form that the secondary vorticity
develops following ejection from the body.

5. Effect of Reynolds number on ejected vorticity
Parameters that characterize the secondary vorticity loop, including vortex loop

strength, maximum vorticity magnitude, and minimum separation distance between
locations of peak vorticity (loop legs), are examined in the current section for impulsive
vortex start-up with vortex Reynolds numbers of 500 and 1500 (cases 1 and 2). An
example showing how these different quantities are calculated is illustrated in figure
17. Figure 17(a) shows a contour plot of ωy in the plane y = 0.2 near the base of
the secondary vorticity structure. The vorticity contours are dominated by a vortex
pair with ωy of opposite sign. The cores of both vortices, which make up the legs
of the secondary vortex loop, are deformed in a manner characteristic of a pair of
opposite-sign vortices in two dimensions. The strengths of both the negative and
positive sign vortices in this cross-section are calculated using the contours indicated
by dashed lines in figure 17(a), both by integrating ωy over the area enclosed by the
contour and by integrating the tangential component of velocity around the contour.
The vorticity values are extracted on a line passing through the peak values of ωy
in the two vortex patches, as shown in figure 17(b), and the parameter l denotes the
distance between the peak vorticity locations.

Data for strength of the secondary vortices in the plane y = 0.2 as a function
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Figure 18. Data for time variation for the secondary vortex strength measured in the plane y = 0.2
near the base of the vortex structure. Filled symbols denote data computed using area integration of
vorticity, while open symbols denote data computed using integration of velocity about the contour.

4, Re = 500; ©, Re = 1500; ——, best fit to the data.
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Figure 19. Vortex lines in the ejected vorticity structure for case 2 at time t = 1.0, showing
spanning of vortex lines between the two strong legs of the vortex loop.

of time is given in figure 18. Open symbols denote values calculated using contour
integration of tangential velocity, and filled symbols denote values calculated using
area integration of ωy . The root-mean-square difference between vortex strength
values obtained using these two methods is 0.036, or about 10%. Circles denote
data for Re = 1500 and triangles denote data for Re = 500. The computations with
different Reynolds numbers yield nearly identical values of vortex strength, which is
a consequence of the fact that the boundary-layer strength is determined from the
external inviscid flow and the location of boundary-layer separation is not sensitive
to Reynolds number.

The data in figure 18 indicate that the secondary vortex strength increases nearly
linearly with time when measured at a fixed location. This trend is not consistent
with what we would expect for a simple hairpin vortex surrounded by irrotational
fluid, for which the strength must be uniform along the vortex tube. To explain the
observed increase with time of the secondary vortex strength, a plot of vortex lines
within the secondary vortex structure is given in figure 19 for case 2 at time t = 1.0.



Simulation of normal vortex–cylinder interaction 395

0.5

0.4

0.3

0.2

0.1

0
0.6 0.8

l

Time, t
1.0

(a)

ωy, max

1.4 1.61.2

20

16

12

8

4

0
0.6 0.8

Time, t
1.0

(b)

1.4 1.61.2

Figure 20. Data for time variation of (a) vortex loop separation distance l, and (b) maximum
vorticity magnitude in a cross-section of the secondary vorticity structure at y = 0.2. e, ——, data
for Re = 1500; 4, – – –, data for Re = 500.

These vortex lines originate in the cylinder boundary layer, arch outward into the
ejected vortex structure, and then rejoin the cylinder boundary layer on the other side.
A high concentration of vortex lines around the periphery of the ejected vorticity field
marks the strong loop-like vortex that forms from roll up of the secondary vorticity
tongue as it is ejected outward. In between the legs of this vortex loop lies a vorticity
sheet, across which vortex lines span to connect the loop legs. Because of the presence
of this vorticity sheet, the legs of the loop-like vortex structure do not form a vortex
tube, and the strength is consequently not restricted to be uniform along the length
of these legs.

Data for vortex leg separation distance l and maximum ωy magnitude are given in
the plane y = 0.2 in figure 20 for both Re = 500 and Re = 1500. The value of l is
similar in both cases, but is found to be about 12% higher in the Re = 500 case than
in the Re = 1500 case. The maximum vorticity is initially very similar in both cases,
which is due to the fact that the boundary-layer vorticity is initialized in the same
way for both computations. Over time, the vorticity in the Re = 500 case becomes
less than that in the Re = 1500 case by up to 25%.

The data in figures 18 and 20 are given for a single cross-sectional plane of the
secondary vortex structure. Kelvin’s theorem requires that the strength of a material
circuit is invariant if the vorticity flux vanishes on the circuit about which the
circulation is computed. This theorem suggests that the vortex strength should be
‘frozen in’ to the secondary vortex structure, provided that cross-diffusion of vorticity
between the two vortex legs can be neglected. To test this idea, data for vortex strength
are measured over a series of (x, z)-slices at different values of the normal distance,
ynorm ≡ 0.3− y, from the cylinder leading edge. It is observed that the velocity Vn of
the tip of the secondary vorticity structure is approximately constant over the time
interval 0.6 6 t 6 1.0, during which the secondary vorticity is pulled away from the
cylinder boundary layer and just begins to wrap around the primary vortex. Dividing
the distance between the measuring plane and the plane y = 0.2 used in figure 18
by Vn yields the difference between the time at which the measurement is taken and
the effective time at which the material circuit was located in the plane y = 0.2. The
value of the vortex strength given by the mean line at this effective time in figure 18 is
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Figure 21. Secondary vortex strength as a function of distance normal to the cylinder leading edge
for case 2 at time t = 1.2. e, measured data; ——, predicted values from the best-fit line of figure
18, assuming frozen vorticity field; – – –, the uncertainty band of the prediction, owing to scatter in
figure 18.

compared to the measured vortex strength data in figure 21. Two dashed lines drawn
parallel to the mean line indicate uncertainty in the predicted Γs owing to data scatter
in figure 18. The measured data in figure 21 are all within the uncertainty band of
the predicted values.

6. Results with positive and negative axial free-stream velocity
In this section, we examine the effect of free-stream flow in the positive and

negative z-directions, parallel to the cylinder axis, on the impulsive vortex start-up
case discussed in the previous two sections. The magnitude of the free-stream velocity
(0.334) is slightly less than half the maximum slip velocity (0.92) on the cylinder
outer boundary layer induced by the vortex. The free-stream velocity gives rise to
an ambient azimuthal vorticity field on the cylinder surface. The ambient vorticity
increases the boundary-layer vorticity generated by the vortex in case 3 and decreases
the boundary-layer vorticity generated by the vortex in case 4. The positive (negative)
free-stream velocity advects the vortex toward (away from) the region of adverse axial
pressure gradient. It is observed that the vorticity ejection process and the structure of
the ejected vorticity field is qualitatively the same in cases with positive and negative
axial flow to that with no free-stream velocity. However, vorticity is observed to be
ejected at an earlier time in the case with positive axial flow, and at a later time in
the case with negative axial flow, than in the case with no free-stream velocity. For
instance, the positions of the Lagrangian computational points in a thin slice of the
flow field (spanning from −0.2 6 x 6 0.2) are shown at time t = 1.4 for cases 2–4
in figure 22. For the case with positive free-stream axial velocity, the computational
points have wrapped about 75% of the way around the primary vortex, whereas, at
the same time, the points have wrapped only about 50% around the primary vortex
for the negative free-stream velocity case.

The limiting streamlines and vortex lines on the cylinder surface are shown in
figures 23 and 24, where results for positive and negative axial free-stream velocity
are shown in parts (a) and (b), respectively, of each figure. As in the case with no
free-stream flow, the ejected vorticity region is characterized by a node that bifurcates
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Figure 22. Velocity vectors attached to the Lagrangian computational points in a thin slice of the
flow (−0.2 6 x 6 0.2) at t = 1.4 for (a) case 3, (b) case 2, (c) case 4. The cross-section of the primary
vortex is indicated by a grey-filled circle.
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Figure 23. Limiting streamlines on the cylinder surface at times (i) t = 0.6, (ii) t = 1.0, (iii) t = 1.4
for (a) positive (case 3), (b) negative (case 4) free-stream velocity.

into two nodes and a saddle in the limiting streamlines. The vortex lines appear quite
different in cases 3 and 4 because the ambient boundary-layer vorticity has opposite
sign.

The strength of the ejected secondary vorticity loop, determined by area integration
of ωy in the plane y = 0.2, is plotted as a function of time in figure 25 for cases
2–4. In the case with positive axial free-stream velocity, the ambient vorticity adds
to that generated by the vortex, and the ejected vortex structure correspondingly has
greater strength than for the case with no free-stream velocity. Similarly, in the case
with negative free-stream velocity the ambient vorticity detracts from that generated
by the vortex and the resulting secondary vortex strength is reduced.
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Figure 24. Vortex lines on the cylinder surface at times (i) t = 0.6, (ii) t = 1.0, (iii) t = 1.4 for
(a) positive (case 3), (b) negative (case 4) free-stream velocity.
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Figure 25. Effect of axial free-stream velocity on the strength of the secondary vortex, measured
at y = 0.2 for 4, positive free-stream velocity; e, no free-stream velocity (case 2); �, negative
free-stream velocity (case 4).

7. Results with normal free-stream velocity
Most vortex–cylinder interaction problems involve some component of flow directed

normal to the cylinder axis, which is responsible for advecting the vortex into the
vicinity of the cylinder. The effect of the normal velocity is characterized by the
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(a) (b) (c)

Figure 26. Velocity vectors attached to the Lagrangian computational points in a thin slice of the
flow field (−0.2 6 x 6 0.2) for case 5 at times (a) t = 0.6, (b) t = 1.0, (c) t = 14. The cross-section
of the primary vortex is indicated by a grey-filled circle.
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Figure 27. Streamlines in a cross-section in the x = 0 plane for case 5 at time t = 1.2, showing the
counter-rotating primary and secondary vortices.

impact parameter I ≡ 2πσU/Γ . Experimental results of Krishnamoorthy et al. (1999)
indicate that the structure of the secondary vorticity field is very different for flows with
high and low values of the impact parameter, as discussed in § 1. The computation
performed in case 5 has the same value of impact parameter as the high-impact-
parameter case considered by Krishnamoorthy et al. (1999). The computational results
indicate that the ejected vorticity structure is qualitatively different for this case than
for the cases discussed in the previous sections, and the overall form of the ejected
vorticity field corresponds roughly to the schematic shown in figure 1(b) based on the
flow-visualization results of Krishnamoorthy et al. (1999).

Positions of the Lagrangian computational points in a thin slice of the flow, in
the range −0.2 6 x 6 0.2, are shown in figure 26 at three times, along with the
cross-section of the primary vortex. The boundary layer gradually thickens in the
region above the vortex (figure 26a) and forms a secondary vortex structure rotating
in the opposite direction to the primary vortex. Unlike the previous cases examined,
for this case the secondary vortex remains in the vicinity of the cylinder surface and
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Figure 28. Topology of near-surface flow for case 5, showing (a) limiting streamlines and
(b) vortex lines on the cylinder surface at times (i) t = 0.6, (ii) t = 1.0, (iii) t = 1.4.

gradually strengthens for a considerable time after it is formed (figure 26b). The
secondary vortex is eventually ejected away from the cylinder surface (figure 26c) and
wraps around the primary vortex. Streamlines in a cross-section at x = 0, projecting
out of the leading edge of the cylinder, are shown in figure 27. Both the primary and
secondary vortices are clearly evident in this cross-section, with a stagnation point on
the cylinder surface between the two structures.

A time series of limiting streamlines and vortex lines on the side of the cylinder
surface facing the vortex are shown in figures 28(a) and 28(b), respectively. A sep-
aration line in the limiting streamlines occurs between the primary and secondary
vortices with a saddle point at the centre. Whereas in cases 1–4 the region of vorticity
ejection is characterized by a pair of nodes at the points where the secondary loop
vortices attach to the blade boundary layer, surface streamline topology in case 5 is
characterized instead by a curved separation line that spans completely around the
cylinder front face. The pair of nodal points in the limiting streamlines and foci in
the surface vortex lines, which mark the position of vortex loop attachment to the
cylinder in cases 1–4, are not observed in case 5.

A plot of an iso-surface of vorticity magnitude (ω = 6) at time t = 1.2 is shown
in figure 29 in an orthographic view in the (x, z)-plane. The secondary vortex has the
form of a ridge of vorticity that wraps around the entire front side of the cylinder.
Cross-sections of the azimuthal component of vorticity at different angles around the
cylinder are shown in figure 30. The azimuthal vorticity within the secondary vortex
has nearly the same strength and core radius over an angle of ±45◦ from the plane
x = 0 at the cylinder leading edge. The secondary vortex strength gradually decays
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Figure 29. Orthographic view in the (x, y)-plane of an iso-surface of vorticity magnitude (ω = 6)
for case 5 at time t = 1.2, showing a ridge of secondary vorticity oriented mainly in the azimuthal
direction and wrapped around the cylinder front surface.

(a) (b) (c) (d )

Figure 30. Contour plots of the azimuthal component of vorticity for a series of cross-sections
through the secondary vortex structure at different angles around the cylinder centre. Plots are
given for case 5 at time t = 1.2, with angles of (a) θ = 0◦ (parallel to the free-stream velocity),
(b) θ = 22.5◦, (c) θ = 45◦, (d) θ = 67.5◦. Regions with ωθ 6 −15 are shaded black and regions with
ωθ > −4.6 are shaded grey.

for angles greater than about 45◦. While the secondary vortex is fed from vorticity
generated in the boundary layer directly beneath the primary vortex, there exists at
all angles a distinguishable region of high azimuthal vorticity that is separate from
the boundary-layer vorticity.

In order to examine in more detail the structure of the ejected secondary vorticity,
contour plots of ωx in the plane x = 0 and of ωy in the plane y = 0.14 are shown
in figure 31 at time t = 1.4. The vorticity is found to be oriented principally in the
azimuthal direction, such that a large vortex patch is observed in the ωx contours in
the plane projecting out of the cylinder leading edge in figure 31(a). Two elongated
regions with ωy of opposite sign are observed in figure 31(b), corresponding to
locations where the y = 0.14 plane slices through the secondary vortex structure
as it wraps around the cylinder surface. The circulation of the secondary vortex is
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Figure 31. Contour plots of (a) ωx in the plane x = 0 and (b) ωy in the plane y = 0.14 for case 5
at time t = 1.4.
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Figure 32. Time variation of the strength of secondary vortex structure for case 5,
measured in the plane x = 0.

computed by area integration of ωx over a contour in the x = 0 plane that surrounds
the secondary vortex, but does not include the boundary-layer vorticity. Repeated
calculations of circulation with different contours yield only a slight (about 1%)
change in vortex strength. The secondary vortex circulation is found to increase
nearly linearly in time, as shown in figure 32.

Surface pressure contours for both inviscid and viscous flow at time t = 1.4
are shown in figure 33. In the case of free-stream velocity normal to the cylinder,
the combination of the vortex-induced velocity and the free-stream velocity causes
formation of a positive pressure patch in the stagnation region below the vortex.
A high-pressure region in a similar location is present in the inviscid computation
results of Affes & Conlisk (1993).

8. Conclusions
The secondary vorticity field generated by a cylinder during interaction with a

normal vortex filament is examined under several different free-stream flow conditions.
Both for the case of no free-stream velocity and for that with free-stream velocity
oriented tangent to the cylinder axis, the secondary vorticity is observed to form a
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Figure 33. Surface pressure contours for case 5 at time t = 1.4 for (a) inviscid and (b) viscous flow.
The projection of the vortex filament is indicated by arrows.

loop-like structure that ejects outward from the cylinder surface and wraps around
the primary vortex. The secondary vortex structure is characterized by a loop of
high-magnitude vorticity that attaches at two points to the front face of the cylinder
boundary layer, but with a weak vorticity sheet spanning between the loop legs along
its length. The two points at which the vortex loop attaches to the cylinder boundary
layer coincide with nodes in the limiting surface streamlines, with foci of opposite
sign rotation in the surface vortex lines, and with minima of the surface pressure
distribution. The strength of the secondary vortex loop increases along its length when
measured at a fixed time, with strength smallest near the loop nose and increasing
toward the loop base. The vortex loop strength increases with addition of a positive
axial free-stream velocity and decreases with addition of a negative axial free-stream
velocity.

When a free-stream velocity is introduced normal to the cylinder axis, the form of
the secondary vorticity field can exhibit dramatic changes. A case examined compu-
tationally in this paper has the same value of impact parameter as in the ‘high impact
parameter’ case studied using flow-visualization experiments by Krishnamoorthy et
al. (1999). We observe that the secondary vorticity in this case does not develop into
a loop-like structure, but instead rolls up to form a vortex that is located just off
the cylinder surface with vorticity oriented mostly in the azimuthal direction. The
iso-surface of the secondary vorticity magnitude in this case has the appearance of
a quasi-two-dimensional ridge of vorticity encircling the front half of the cylinder,
which remains nearly attached to the cylinder all along the length of the vortex
until the primary vortex approaches very close to the cylinder. The strength of the
secondary vortex is observed to increase nearly linearly with time as vorticity is fed
from the cylinder boundary layer.

Research support was provided by the US Army Research Office under grant
number DAAH04-96-1-0081, with The University of Iowa. Thomas L. Doligalski is
the program manager. Computer time was provided by the National Partnership



404 A. A. Gossler and J. S. Marshall

for Advanced Computational Infrastructure (San Diego, California) and the US
Department of Defense High Performance Computing Center.

REFERENCES

Affes, H. & Conlisk, A. T. 1993 Model for rotor tip vortex–airframe interaction. Part 1: Theory.
AIAA J. 31, 2263–2273.

Affes, H., Conlisk, A. T., Kim, J. M. & Komerath, N. M. 1993 Model for rotor tip vortex–airframe
interaction. Part 2: Comparison with experiment. AIAA J. 31, 2274–2282.

Affes, H., Xiao, Z. & Conlisk, A. T. 1994 The boundary-layer flow due to a vortex approaching a
cylinder. J. Fluid Mech. 275, 33–57.

Affes, H., Xiao, Z., Conlisk, A. T., Kim, J. M. & Komerath, N. M. 1998 Model for rotor tip
vortex–airframe interaction. Part 3: Viscous flow on airframe. AIAA J. 36, 409–415.

Barker, S. J. & Crow, S. C. 1977 The motion of two-dimensional vortex pairs in a ground effect.
J. Fluid Mech. 82, 659–671.

Bi, N. & Leishman, J. G. 1990 Experimental study of rotor/body aerodynamic interactions.
J. Aircraft 27, 779–788.

Bi, N., Leishman, J. G. & Crouse, G. L. 1993 Investigation of rotor tip vortex interaction with a
body. J. Aircraft 30, 879–888.

Borouchaki, H. & Lo, S. H. 1995 Fast Delauney triangularization in three dimensions. Comput.
Meth. Appl. Mech. Engng 128, 153–167.

Brand, A., Komerath, N. M. & McMahon, H. 1989 Results from laser sheet visualization of a
periodic rotor wake. J. Aircraft 26, 438–443.

Brand, A. G., Komerath, N. M. & McMahon, H. M. 1990 Correlations of rotor wake/airframe
interaction measurements with flow visualization data. J. Am. Helicopter Soc. 10, 4–15.

Clarke, N. R. & Tutty, O. R. 1994 Construction and validation of a discrete vortex method for
the two-dimensional incompressible Navier–Stokes equations. Comput. Fluids 23, 751–783.

Dhanak, M. R. 1981 Interaction between a vortex filament and an approaching rigid sphere.
J. Fluid Mech. 110, 129–147.

Doligalski, T. L., Smith, C. R. & Walker, J. D. A. 1994 Vortex interaction with walls. Ann. Rev.
Fluid Mech. 26, 573–616.

Doligalski, T. L. & Walker, J. D. A. 1984 The boundary layer induced by a convected two-
dimensional vortex. J. Fluid Mech. 139, 1–28.

Gossler, A. A. 1999 A tetrahedral element Lagrangian vorticity method with application to
vortex–cylinder interaction. PhD dissertation, University of Iowa, Iowa City.

Harvey, J. K. & Perry, F. J. 1971 Flow field produced by trailing vortices in the vicinity of the
ground. AIAA J. 9, 1659–1660.

Hess, J. L. & Smith, A. M. O. 1966 Calculation of potential flow about arbitrary bodies. Prog.
Aeronaut. Sci. 8, 1–138.

Kempka, S. N. & Strickland, J. H. 1993 A method to simulate viscous diffusion of vorticity by
convective transport of vortices at a non-solenoidal velocity. Sandia Nat. Lab. Tech. Rep.
SAND93-1763.

Kida, S. & Takaoka, M. 1994 Vortex reconnection. Ann. Rev. Fluid Dyn. 26, 169–189.

Kim, J. M. & Komerath, N. M. 1995 Summary of the interaction of a rotor wake with a circular
cylinder. AIAA J. 33, 470–478.

Knio, O. M. & Ghoniem, A. F. 1990 Numerical study of a three-dimensional vortex method.
J. Comput. Phys. 86, 75–106.
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